

Prof Lorraine Sherr, Natasha Croome, Katie Bradshaw, Katherine Para-Castaneda, Sarah Skeen, Mark Tomlinson

What do we know about HIV and brain?

- Over 60% adults with HIV show some cognitive effects (Fisher-Smith 2005)
- Before cART treatment almost all developed some brain pathology (Navia 2005)
- Cognitive effects even for those on treatment (Simioni 2009)

Grading system for HAND HIV Associated Neurological Disorder

- Asymptomatic neurocognitive impairment (ANI)
 - Performance 1 SD below mean of normative scores in at least two cognitive areas (attention-information processing, language, abstraction-executive, complex perceptual motor skills, memory, learning and recall, simple motor skills or sensory perception
 - Asymptomatic
- HIV-associated mild neurocognitive disorder (MND)
 - Performance of at least 1 SD below demographically corrected norms on tests of at least two different cognitive domains
 - Interferes, at least mildly, with activities of daily living
- HIV-associated dementia (HAD)
 - Performance at least 2 SD below demographically corrected normative means in at least two different cognitive areas
 - Marked difficulty in ADLs due to the cognitive impairment

????????Children??????????

Cognitive effects

(2009 review Sherr et al, 2013 update 21 studies 18/21 deficit)

Overall effects found - key

Detrimental effect

No effect

Mixed effect

STUDY	PLACE	FINDINGS	
Aylward et al (1992)	USA (n=96)	HIV positive children scored lower than negative or reverter children.	
Bachanas P et al (2001)	USA (n=68)	25% HIV+ve clinically significant emotional or behaviour problems	
Bell et al (1997)	Cote d Ivoire (n=153)	Low prevalence of HIV encephalitis - explained by comparatively early death	
Belman et al (1996)	USA (n=247)	HIV+ve significantly more neurologic problems	
Bisiacchi et al (2000)	Italy (n=42)	Executive function problems in all HIV+ve children	
Blanchette et al (2001).	Canada (n=50)	HIV+ve significantly lower scores on mental scale and performance scale	
Blanchette et al (2002)	Canada (n=25)	Subtle motor impairments in HIV+ve.	
Bobat et al (2001)	South Africa (N=141)	HIV+ve children lowered length/weight for age	
Boivin et al 1995	Zaire (n=50)	Motor and visual spatial deficits.	
Bruck I et al (2001)	Brazil (n=150)	Significant neurodevelopmental delay in HIV+ve group	

Buchacz (1997)	USA (n=983)	Immunosuppression associated with delayed pubertal onset.	
Chase et al 1995	USA (n=51)	HIV associated with delayed motor and mental development	
Cohen et al (1991)	USA (n=48)	Significant effects in school achievement.	
Coplan et al (1998)	USA (n=78)	Language deterioration among HV+ve.	
Corsi (1991)	Italy	Hyperactive	
Coscia et al (2001)	USA (n=43)	Home and advanced disease factors.	
Depas et al (1995)	France (n=8)	Functional abnormalities precede clinical symptoms	
Esposito et al (1999)	Italy (n=117)	Children born to +ve mothers significantly higher depression and anxiety.	
Fishkin et al (2000)	USA (n=80)	Overall ns. HIV+ve lower block design	
Fowler et al (2000)	USA (n=595)	HIV associated with abnormal mental and motor growth, early and marked cognitive delays	
Frank E et al (1997)	USA (n=27)	Visuomotor skills sensitive to stage of disease	
Gay et al l(1995)	USA (n=126)	Mental and motor scores significantly lower in HIV+ve.	
Havens J (1994)	USA (n=60)	High rates of disruptive/behavioural morbidity	
Hilgartner (1993)	USA (n=333)	HIV+ve height decline, delays in sexual maturation. Lower scores	

Hooper S et al (1993)	USA (n=38)	No significant differences	
Hooper et al (1997)	USA (n=58)	No differences between HIV+ve and -ve	
Knight et al (2000)	USA (n=50)	HIV+ve significantly lower baseline and f/up	
Levenson et al (1992)	USA (n=49)	44% scoring low on the inventory. HIV+ve significantly worse than seroreverters.	
Llorente et al (2003)	USA (n=157)	greater mortality in those scoring in lower quartile.	
Macmillan et al (2001)	USA (n=1094)	lower for HIV+ve children, persisted at 24 months	
McKinney & Robertson J (1993)	USA (n=170)	HIV +ve smaller weight for age and length for age	
Mellins & Ehrardt (1994)	USA (n=25)	Loss and separation particular problems. Sibling anger high burden from caregiving	
Mellins et al (2003)	USA (n=307)	High level of behaviour probs. No HIV effect	
Mialky et al (2001)	USA (n=85)	53% special services. 25% not in appropriate class	
Msellati et al 1993	Rwanda (n=436)	Motor problems 31% at 1 yr, 40% at 1.5 years	
Ndugwe et al (1997)	Uganda (n=436)	HIV+ve greater deficits in motor development and neurologic abnormalities	
Nozyce et al 1994	USA (n=181)	HIV+ve symptomatic significantly lower. HIV+ve well children similar to controls.	

Piazza et al (1995)	Italy (n=138)	CS 36% for symptomatic HIV	
Pilowsky et al (2001)	USA (n=73)	Children of depressed parents at higher risk	
Pollack et al (1996)	USA (n=65)	HIV+ve infants impaired	
Scafidi et al (1997)	USA (n=48)	Infants of HIV+ve mothers had more orienting problems and abnormal reflexes	
Smith et al (2000)	USA (N=114)	Early HIV infection increased risk of poor neurdevelopmental functioning	
Tardieu et al 1995	France (n=33)	29% affective disorders, 67% normal school achievement, 54% abnormal visual-spatial and time orientation, 44% speech/language delay	
Watkins et al (2000)	USA (N=173)	Attention span affected in HIV +ve children	
Whitt et al (1993)	USA (n=63)	No differences – but subtle deficits when compared to age norms.	

2009-2013 Update

Van Rie et al. (2009)	Democratic Republic of Congo, N = 160)	HIV+ had significantly lower developmental scores
Van Rie et al. (2008)	Democratic Republic of Congo, (N = 160)	HIV+ had significantly more motor and language expression delay
Abubakar et al. (2009)	Kenya, (N = 367)	HIV has a detrimental effect on psychomotor development
Koekkoeka et al (2008)	Holland (N=22)	HIV+ performed significantly poorer on neuropsychological tests compared to norms
Brackis-Cott et al. (2009)	USA, (N = 325)	HIV+ significantly impaired receptive language ability and word recognition
Lowick et al. (2012)	South Africa, (N = 60)	HIV+ had significantly increased likelihood of severe neurodevelopmental delay
Jelsma et al. (2011)	South Africa, (N = 44)	HIV+ performed significantly worse on the Peabody developmental motor scales
Baillieu et al. (2008)	South Africa, (N = 80)	HIV+ children had significantly delayed cognitive and motor development.
Ferguson et al. (2009)	South Africa, (N = 86)	HIV+ children had significantly delayed motor development.

Baker et al. (2011)	USA, (N = 70)	HIV+ children scored lower than controls in the Peabody	
		but was not significant	
Gadow et al. (2012)	USA, (N = 525)	HIV+ had significantly more symptoms of psychiatric illness.	
Mellins et al. (2009)	USA, (N = 340)	HIV+ significantly more likely to meet criteria for ADHD	
Gadow et al. (2010)	USA & Puerto Rico, (N = 582)	HIV+ had significantly more severe somatization scores.	
Maleea et al. (2011)	USA & Puerto Rico, (N = 416)	HIV+ had significantly more behavioural problems	
Thomaidis et al. (2010)	Greece, (N = 60)	HIV+ neuro-imaging abnormalities <practical intelligence<br="">quotient scores and > abnormal emotional/ hyperactivity</practical>	
Isaranurug et al. (2008)	Thailand, (N = 388)	HIV+ had significantly worse mean scores for self-control and quick recovery	
Chernoff et al. (2009)	USA, (N = 575)	HIV+ children received >behavioural treatment.	
Serchuck et al. (2010)	USA & Puerto Rico, (N = 576)	HIV+ youths self-reporting pain had significantly higher mean symptom severity for general anxiety disorder	
Rice et al. (2012)	USA, (N = 437)	No significant differences in language impairment	
Dobrova-Krol et al. (2010)	Ukraine, (N = 64)	No association between HIV status and attachment security	
Ananworanich et al (2008)	Thailand, (N = 257)	No significant differences in CBCL	

92.4% found at least some negative effects

50/66 studies significant detrimental effect of HIV

11/66 showed mixed

5/66 showed no differences

HIV Affected children – HIV-ve born to HIV+ve mothers

Clues from Overall Morality (Filtau et al 2010)

Shapiro Botswana Brahmblatt Uganda Chilongozi Malaawi Sutcliffe Zambia

<u>Study</u>		<u>Place</u>	<u>Sample</u>	<u>Lower mean scores for</u> <u>Affected Children vs</u> <u>Control (Y/N)</u> (Significance reported)
1. Boi	ivin et al (1995)	Zaire	14 HIV+ve, 20 Affected, 16 Control	Yes*
2. Sar	nmaneechai et al	Thailand	30 affected, 35 control	Yes (sig)
3. For	rehand et al 1998	USA	87 affected vs 149 control	Yes (sig)
4. Doi -	rsey et al (1999)	USA	87 affected, 149 control	Yes (sig)
5. Epc	osito et al (1999	Italy	39 Affected, 78 Controls	Yes (sig)
6. Var	n Rie et al (2008)	DCR	35 HIV+ve. 35 Affected, 90 Controls	Yes (Sig)
7. Var	n Rie et al (2009)	DCR	35 HIV+ve. 35 Affected, 90 Controls	Yes (Sig)
8. Isaı (20	ranurug et al)08)	Thailand	74 HIV+ve, 223 Affected, 91 control	unclear
9. Dro	otar et al (1998)	Uganda	61 HIV+ve, 234 Affected, 115 Control	No
10. Bag (20	genda et al)06)	Uganda	28 HIV+ve, 42 Affected, 37 Control	No
11. Ms	sellati et al (1993)	Rwanda	43 HIV+ve, 133 Affected 193 Control	No
12. Me	ellins et al (1994)	USA	24 HIV+ve, 30 Affected, 23 Control	No

Cognitive development

Interventions

Table of Interventions

Community Cohort study

- 989 pairs
- 135 HIV+ve comparison group n=844
- South Africa Malawi
- Parental report, child report, Study cognitive measures
- No differences on mental health

- Significant difference on Cognitive
- HIV+ children twice as likely to present with developmental difficulties,
- But significantly less likely enrolled in child development programmes

